Chaotic wave packet spreading in one-dimensional disordered nonlinear lattices

Haris Skokos

Department of Mathematics and Applied Mathematics University of Cape Town Cape Town, South Africa

E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

Outline

- Disordered 1D lattices:
 - √ The quartic disordered Klein-Gordon (DKG) model
 - ✓ The disordered discrete nonlinear Schrödinger equation (DDNLS)
 - **✓ Different dynamical behaviors**
- Chaotic behavior of the DKG and DDNLS models
 - **✓ Lyapunov exponents**
 - **✓ Deviation Vector Distributions**
- The Peyrard-Bishop-Dauxois (PBD) model of DNA
- Summary

Work in collaboration with

Bob Senyange (PhD student): DKG model

Bertin Many Manda (PhD student): DDNLS model

Malcolm Hillebrand (PhD student): DNA model

The DKG and DDNLS models

Interplay of disorder and nonlinearity

Waves in disordered media – Anderson localization [Anderson, Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]

Waves in nonlinear disordered media – localization or delocalization?

Theoretical and/or numerical studies [Shepelyansky, PRL (1993) – Molina, Phys. Rev. B (1998) – Pikovsky & Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)]

Experiments: propagation of light in disordered 1d waveguide lattices [Lahini et al., PRL (2008)]

The disordered Klein - Gordon (DKG) model

$$H_{K} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$. Typically N=1000.

Parameters: W and the total energy E. $\tilde{\varepsilon}_l$ chosen uniformly from $\left| \frac{1}{2}, \frac{3}{2} \right|$.

Linear case (neglecting the term $u_l^4/4$)

Ansatz: $u_l = A_l \exp(i\omega t)$. Normal modes (NMs) $A_{v,l}$ - Eigenvalue problem:

$$\lambda A_l = \varepsilon_l A_l - (A_{l+1} + A_{l-1})$$
 with $\lambda = W\omega^2 - W - 2$, $\varepsilon_l = W(\tilde{\varepsilon}_l - 1)$

The disordered discrete nonlinear Schrödinger (DDNLS) equation

We also consider the system:

$$\boldsymbol{H}_{D} = \sum_{l=1}^{N} \boldsymbol{\varepsilon}_{l} \left| \boldsymbol{\psi}_{l} \right|^{2} + \frac{\boldsymbol{\beta}}{2} \left| \boldsymbol{\psi}_{l} \right|^{4} - \left(\boldsymbol{\psi}_{l+1} \boldsymbol{\psi}_{l}^{*} + \boldsymbol{\psi}_{l+1}^{*} \boldsymbol{\psi}_{l} \right)$$

where ε_l chosen uniformly from $\left|-\frac{W}{2},\frac{W}{2}\right|$ and β is the nonlinear parameter.

Conserved quantities: The energy and the norm $S = \sum_{l} |\psi_{l}|^{2}$ of the wave packet.

Distribution characterization

We consider normalized energy distributions $z_v \equiv \frac{E_v}{\sum_m E_m}$

with
$$E_v = \frac{p_v^2}{2} + \frac{\tilde{\varepsilon}_v}{2} u_v^2 + \frac{1}{4} u_v^4 + \frac{1}{4W} (u_{v+1} - u_v)^2$$
 for the DKG model,

and norm distributions $z_v \equiv \frac{|\psi_v|^2}{\sum_l |\psi_l|^2}$ for the DDNLS system.

Second moment: $m_2 = \sum_{v=1}^{N} (v - \overline{v})^2 z_v$ with $\overline{v} = \sum_{v=1}^{N} v z_v$

Participation number: $P = \frac{I}{\sum_{v=1}^{N} z_v^2}$

measures the number of stronger excited modes in z_v . Single site P=1. Equipartition of energy P=N.

Different Dynamical Regimes

Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)] Δ : width of the frequency spectrum, d: average spacing of interacting modes, δ : nonlinear frequency shift.

Weak Chaos Regime: $\delta < d$, $m_2 \propto t^{1/3}$

Frequency shift is less than the average spacing of interacting modes. NMs are weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & Shepelyansky, PRL (2008)].

Intermediate Strong Chaos Regime: $d<\delta<\Delta$, $m_2 \propto t^{1/2} \longrightarrow m_2 \propto t^{1/3}$

Almost all NMs in the packet are resonantly interacting. Wave packets initially spread faster and eventually enter the weak chaos regime.

Selftrapping Regime: $\delta > \Delta$

Frequency shift exceeds the spectrum width. Frequencies of excited NMs are tuned out of resonances with the nonexcited ones, leading to selftrapping, while a small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].

Single site excitations

DDNLS W=4, β = 0.1, 1, 4.5 **DKG** W = 4, E = 0.05, 0.4, 1.5

No strong chaos regime

In weak chaos regime we averaged the measured exponent α (m₂~t $^{\alpha}$) over 20 realizations:

 α =0.33±0.05 (DKG) α =0.33±0.02 (DDLNS)

Flach et al., PRL (2009) S. et al., PRE (2009)

DKG: Different spreading regimes

Crossover from strong to weak chaos (block excitations)

Variational Equations

We use the notation $\mathbf{x} = (\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_N, \mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_N)^T$. The deviation vector from a given orbit is denoted by

$$\mathbf{v} = (\delta \mathbf{x}_1, \delta \mathbf{x}_2, \dots, \delta \mathbf{x}_n)^T$$
, with $\mathbf{n} = 2\mathbf{N}$

The time evolution of v is given by the so-called variational equations:

$$\frac{\mathbf{dv}}{\mathbf{dt}} = -\mathbf{J} \cdot \mathbf{P} \cdot \mathbf{v}$$

where

$$\mathbf{J} = \begin{pmatrix} \mathbf{0}_{\mathbf{N}} & -\mathbf{I}_{\mathbf{N}} \\ \mathbf{I}_{\mathbf{N}} & \mathbf{0}_{\mathbf{N}} \end{pmatrix}, \ \mathbf{P}_{ij} = \frac{\partial^{2} \mathbf{H}}{\partial \mathbf{x}_{i} \partial \mathbf{x}_{j}} \ i, j = 1, 2, \dots, n$$

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93

Maximum Lyapunov Exponent

Chaos: sensitive dependence on initial conditions.

Roughly speaking, the Lyapunov exponents of a given orbit characterize the mean exponential rate of divergence of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition $\mathbf{x}(0)$ and an initial deviation vector from it $\mathbf{v}(0)$. Then the mean exponential rate of divergence is:

$$\mathbf{mLCE} = \lambda_1 = \lim_{t \to \infty} \Lambda(t) = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\|\mathbf{v}(t)\|}{\|\mathbf{v}(0)\|} \Big|_{q_n}$$

$$\lambda_1 = 0 \to \mathbf{Regular\ motion}$$

$$\lambda_1 \neq 0 \to \mathbf{Chaotic\ motion}$$

$$10^{-3}$$

$$10^{-3}$$

$$10^{-3}$$

$$10^{-3}$$

$$10^{-3}$$

$$10^{-3}$$

$$10^{-3}$$

$$10^{-3}$$

$$10^{-3}$$

$$10^{-3}$$

$$10^{-3}$$

$$10^{-3}$$

$$10^{-3}$$

Figure 5.7. Behavior of σ_n at the intermediate energy E=0.125 for initial points taken in the ordered (curves 1-3) or stochastic (curves 4-6) regions (after Benettin et al., 1976).

nr

Symplectic integration

We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. Num. Math. (2013) – Senyange & S., EPJ ST (2018)] to the DKG model:

$$\boldsymbol{H}_{K} = \sum_{l=1}^{N} \left(\frac{\boldsymbol{p}_{l}^{2}}{2} + \frac{\tilde{\boldsymbol{\varepsilon}}_{l}}{2} \boldsymbol{u}_{l}^{2} + \frac{1}{4} \boldsymbol{u}_{l}^{4} + \frac{1}{2W} (\boldsymbol{u}_{l+1} - \boldsymbol{u}_{l})^{2} \right)$$

and the 3-part splitting integrator ABC⁶_[SS] [S. et al., Phys. Let. A (2014) – Gerlach et al., EPJ ST (2016) – Danieli et al., MinE (2019)] to the DDNLS system:

$$H_{D} = \sum_{l} \varepsilon_{l} |\psi_{l}|^{2} + \frac{\beta}{2} |\psi_{l}|^{4} - (\psi_{l+1} \psi_{l}^{*} + \psi_{l+1}^{*} \psi_{l}), \quad \psi_{l} = \frac{1}{\sqrt{2}} (q_{l} + i p_{l})$$

$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

By using the so-called Tangent Map method we extend these symplectic integration schemes in order to integrate simultaneously the variational equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. (2011) – Gerlach et al., IJBC (2012)].

DKG: Weak Chaos

Block excitation L=37 sites, E=0.37, W=3

DKG: Weak Chaos

Block excitation L=37 sites, E=0.37, W=3

DKG: Weak Chaos

Individual runs

Linear case E=0.4, W=4

Average over 50 realizations

Single site excitation E=0.4, W=4

Block excitation (L=21 sites) E=0.21, W=4 Block excitation (L=37 sites) E=0.37, W=3

S. et al., PRL (2013)

Weak Chaos: DKG and DDNLS

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=37 sites) E=0.37, W=3 Single site excitation E=0.4, W=4 Block excitation (L=21 sites) E=0.21, W=4 Block excitation (L=13 sites) E=0.26, W=5 Block excitation (L=21 sites) β =0.04, W=4 Single site excitation β =1, W=4 Single site excitation β =0.6, W=3 Block excitation (L=21 sites) β =0.03, W=3

Strong Chaos: DKG and DDNLS

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=83 sites) E=0.83, W=2 Block excitation (L=37 sites) E=0.37, W=3 Block excitation (L=83 sites) E=0.83, W=3 Block excitation (L=21 sites) β =0.62, W=3.5 Block excitation (L=21 sites) β =0.5, W=3 Block excitation (L=21 sites) β =0.72, W=3.5

Energy DVD

DKG weak chaos L=37 sites, E=0.37, W=3

Deviation vector:

$$v(t) = (\delta u_1(t), \delta u_2(t), ..., \delta u_N(t), \delta p_1(t), \delta p_2(t), ..., \delta p_N(t))$$

$$\mathbf{DVD:} \boldsymbol{\xi}_{l}^{D} = \frac{\delta u_{l}^{2} + \delta p_{l}^{2}}{\sum_{l} \left(\delta u_{l}^{2} + \delta p_{l}^{2}\right)}$$

Energy DVD

DKG weak chaos L=37 sites, E=0.37, W=3

Deviation vector:

$$v(t) = (\delta u_1(t), \delta u_2(t), ..., \delta u_N(t), \delta p_1(t), \delta p_2(t), ..., \delta p_N(t))$$

$$\mathbf{DVD:} \boldsymbol{\xi}_{l}^{D} = \frac{\delta u_{l}^{2} + \delta p_{l}^{2}}{\sum_{l} \left(\delta u_{l}^{2} + \delta p_{l}^{2}\right)}$$

DKG: weak chaos. L=37 sites, E=0.37, W=3

DVD

DKG: weak chaos. L=37 sites, E=0.37, W=3

Energy

DVD

Weak Chaos: DKG and DDNLS

DKG: W=3, L=37, E=0.37

DDNLS: W=4, L=21, β =0.04

DDNLS: strong chaos W=3.5, L=21, β =0.72

DVD

DDNLS: strong chaos W=3.5, L=21, β =0.72

Norm

-12

1000

1500

2000

1500

2000

1000

Strong Chaos: DKG and DDNLS

DKG: W=3, L=83, E=8.3

DDNLS: W=3.5, L=21, β =0.72

Characteristics of DVDs

Weak chaos

Strong chaos

Characteristics of DVDs

KG weak chaos L=37, E=0.37, W=3

Range of the lattice visited by the DVD

$$R(t) = \max_{[0,t]} \left\{ \overline{l}_w(t) \right\} - \min_{[0,t]} \left\{ \overline{l}_w(t) \right\}$$
$$\overline{l}_w = \sum_{l=1}^{N} l \xi_l^D$$

The PBD model of DNA

DNA structure

Double helix with two types of bonds:

- Adenine-thymine (AT) two hydrogen bonds
- Guanine-cytosine (GC) three hydrogen bonds

Hamiltonian model

Peyrard-Bishop-Dauxois (PBD) model

[Dauxois, Peyrard, Bishop, PRE (1993)]

$$H_N = \sum_{n=1}^N \left[\frac{1}{2m} p_n^2 + \frac{D_n (e^{-a_n y_n} - 1)^2}{2} + \frac{K}{2} (1 + \rho e^{-b(y_n + y_{n-1})}) (y_n - y_{n-1})^2 \right]$$

Bond potential energy (Morse potential)

GC: D=0.075 eV, $a=6.9 \text{ Å}^{-1}$

AT: D=0.05 eV, $a=4.2 \text{ Å}^{-1}$

Nearest neighbors coupling potential

 $K=0.025 \text{ eV/Å}^2$, $\rho=2$, $b=0.35 \text{ Å}^{-1}$

Different arrangements of AT and GC bonds.

AT AT AT AT AT AT AT AT AT

 $P_{AT}=1 (100\% AT bonds)$

Different arrangements of AT and GC bonds.

AT AT AT AT AT AT AT AT

P_{AT}=1 (100% AT bonds)

 P_{AT} =0.4 (40% AT bonds)

Different arrangements of AT and GC bonds.

AT AT AT AT AT AT AT AT

P_{AT}=1 (100% AT bonds)

 $P_{AT} = 0.4 (40\% AT bonds)$

Different arrangements of AT and GC bonds.

Lyapunov exponents (E/n=0.04, P_{AT}=0.3)

1 realization, 1 initial condition

Lyapunov exponents (E/n=0.04, P_{AT}=0.3)

1 realization, 1 initial condition

1 realization, 10 initial conditions

Lyapunov exponents (E/n=0.04, P_{AT} =0.3)

1 realization, 1 initial condition

1 realization, 10 initial conditions

10 realizations, 10 initial conditions

Homogeneous chain [Barré & Dauxois, EPL (2001)]

Homogeneous chain [Barré & Dauxois, EPL (2001)]

Homogeneous chain [Barré & Dauxois, EPL (2001)]

DNA denaturation (melting)

Melting: large bubbles forming in the DNA chain as bonds break

As y_n increases the exponentials in

$$D_n(e^{-a_ny_n}-1)^2+\frac{K}{2}(1+\rho e^{-b(y_n+y_{n-1})})(y_n-y_{n-1})^2$$
 tend to 0, the system becomes effectively linear and the mLCE \rightarrow 0.

DNA denaturation (melting)

Melting: large bubbles forming in the DNA chain as bonds break

As y_n increases the exponentials in

$$D_n(e^{-a_ny_n}-1)^2 + \frac{K}{2}(1+\rho e^{-b(y_n+y_{n-1})})(y_n-y_{n-1})^2$$

tend to 0, the system becomes effectively linear and the mLCE \rightarrow 0.

DNA denaturation (melting)

Melting: large bubbles forming in the DNA chain as bonds break

As y_n increases the exponentials in

$$D_n(e^{-a_ny_n}-1)^2 + \frac{K}{2}(1+\rho e^{-b(y_n+y_{n-1})})(y_n-y_{n-1})^2$$
 tend to 0, the system becomes effectively linear and the mLCE \rightarrow 0.

Relation between the concentration of the deviation vector at a site and the formation of a bubble at that site.

Future works

- DKG and DDNLS models in 2 spatial dimensions
- Extended, sequence-dependent PBD models of DNA
- Models of granular material
- Graphene models

Future works

DDNLS in 2 spatial dimensions (strong chaos)

Future works

DDNLS in 2 spatial dimensions (strong chaos)

Summary

- Both the DKG and the DDNLS models show similar chaotic behaviors
- The mLCE and the DVDs show different behaviors for the weak and the strong chaos regimes.
- Lyapunov exponent computations show that:
 - ✓ Chaos not only exists, but also persists.
 - ✓ Slowing down of chaos does not cross over to regular dynamics.
 - ✓ Weak chaos: mLCE ~ $t^{-0.25}$ Strong chaos: mLCE ~ $t^{-0.3}$
- The behavior of DVDs can provide information about the chaoticity of a dynamical system.
 - ✓ Chaotic hot spots meander through the system, supporting a homogeneity of chaos inside the wave packet.
- Heterogeneity influences the chaotic behavior of the DNA chaotic behavior.
- There seems to be a relation between the concentration of the DVD at a site and the formation of a bubble
- B. Senyange, B. Many Manda & Ch. S.: Phys. Rev. E, 98, 052229 (2018) 'Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices'
- M. Hillebrand, G. Kalosakas, A. Schwellnus & Ch. S.: Phys. Rev. E, 99, 022213 (2019) 'Heterogeneity and chaos in the Peyrard-Bishop-Dauxois DNA model'

References

- Flach, Krimer, S. (2009) PRL, 102, 024101
- S., Krimer, Komineas, Flach (2009) PRE, 79, 056211
- S., Flach (2010) PRE, 82, 016208
- Laptyeva, Bodyfelt, Krimer, S., Flach (2010) EPL, 91, 30001
- Bodyfelt, Laptyeva, S., Krimer, Flach (2011) PRE, 84, 016205
- Bodyfelt, Laptyeva, Gligoric, S., Krimer, Flach (2011) IJBC, 21, 2107
- S., Gkolias, Flach (2013) PRL, 111, 064101
- Tieleman, S., Lazarides (2014) EPL, 105, 20001
- Antonopoulos, Bountis, S., Drossos (2014) Chaos, 24, 024405
- Antonopoulos, S., Bountis, Flach (2017) Chaos Sol. Fract., 104, 129
- Senyange, Many Manda, S. (2018) PRE, 98, 052229
- S., Gerlach (2010) PRE, 82, 036704
- Gerlach, S. (2011) Discr. Cont. Dyn. Sys.-Supp., 2011, 475
- Gerlach, Eggl, S. (2012) IJBC, 22, 1250216
- S., Gerlach, Bodyfelt, Papamikos, Eggl (2014) Phys. Lett. A, 378, 1809
- Gerlach, Meichsner, S. (2016) Eur. Phys. J. Sp. Top., 225, 1103
- Senyange, S. (2018) Eur. Phys. J. Sp. Top., 227, 625
- Danieli, Many Manda, Mithun, S. (2019) MinE (in press), physics.comp-ph/1812.0187
- Hillebrand, Paterson-Jones, Kalosakas, S. (2018) Reg. Chaotic Dyn., 23, 135
- Hillebrand, Kalosakas, Schwellnus, S. (2019) PRE, 99, 022213