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The  

DKG and DDNLS  

models 



Interplay of disorder and nonlinearity 

Waves in nonlinear disordered media – localization or 
delocalization? 

Theoretical and/or numerical studies [Shepelyansky, PRL 

(1993) – Molina, Phys. Rev. B (1998) – Pikovsky & 

Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – 

Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & 

Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et 

al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – 

Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)] 

Experiments: propagation of light in disordered 1d waveguide 
lattices [Lahini et al., PRL (2008)] 

Waves in disordered media – Anderson localization [Anderson, 

Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]  



The disordered Klein – Gordon (DKG) model 
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000. 

Parameters: W and the total energy E. 

The disordered discrete nonlinear Schrödinger 

(DDNLS) equation 
We also consider the system: 
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Conserved quantities: The energy and the norm                        of the wave packet. 
2
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Linear case (neglecting the term ul
4/4)  

Ansatz: ul=Al exp(iωt). Normal modes (NMs) Aν,l - Eigenvalue problem:  

           λAl = εlAl - (Al+1 + Al-1) with 
2

l lλ =Wω -W - 2,    ε =W(ε - 1)



Distribution characterization 

We consider normalized energy distributions 

and norm distributions 
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measures the number of stronger excited modes in zν.  

Single site P=1. Equipartition of energy P=N.  

for the DDNLS system. 
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for the DKG model,  



Different Dynamical Regimes 
Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, 

PRE (2010) - Laptyeva et al., EPL (2010) -  Bodyfelt et al., PRE (2011)]  

Δ: width of the frequency spectrum, d: average spacing of interacting modes,  

δ: nonlinear frequency shift.  
 

Weak Chaos Regime: δ<d,     m2  t1/3 

Frequency shift is less than the average spacing of interacting modes. NMs are 

weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & 

Shepelyansky, PRL (2008)]. 
 

Intermediate Strong Chaos Regime: d<δ<Δ,     m2  t1/2    m2  t1/3 

Almost all NMs in the packet are resonantly interacting. Wave packets initially 

spread faster and eventually enter the weak chaos regime. 
 

Selftrapping Regime: δ>Δ 
Frequency shift exceeds the spectrum width. Frequencies of excited NMs are 

tuned out of resonances with the nonexcited ones, leading to selftrapping, while a 

small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)]. 



Single site excitations 

No strong chaos regime 

 

In weak chaos regime we 

averaged the measured 

exponent α (m2~tα) over 

20 realizations: 

 

α=0.33±0.05 (DKG) 

α=0.33±0.02 (DDLNS) 

 

 

Flach et al., PRL (2009)  

S. et al., PRE (2009) 

DDNLS W=4, β= 0.1, 1, 4.5 DKG W = 4, E = 0.05, 0.4, 1.5 

slope 1/3 slope 1/3 

slope 1/6 slope 1/6 



DKG: Different spreading regimes 



Crossover from strong to weak chaos 

(block excitations) 

W=4 

 

Average over 1000 realizations! 
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α=1/3 
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DDNLS β= 0.04, 0.72, 3.6 DKG E= 0.01, 0.2, 0.75 

Laptyeva et al., EPL (2010)  

Bodyfelt et al., PRE (2011) 



Variational Equations 

We use the notation x = (q1,q2,…,qN,p1,p2,…,pN)T. The 

deviation vector from a given orbit is denoted by 

v = (δx1, δx2,…,δxn)T , with n=2N 

The time evolution of v is given by 

the so-called variational equations: 
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Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93 



Maximum Lyapunov Exponent 

Roughly speaking, the Lyapunov exponents of a given orbit characterize the 

mean exponential rate of divergence of trajectories surrounding it.  

λ1=0  Regular motion 

λ10  Chaotic motion 

Chaos: sensitive dependence on initial conditions.  

Consider an orbit in the 2N-dimensional phase space with initial condition 

x(0) and an initial deviation vector from it v(0). Then the mean exponential 

rate of divergence is:  

1
t t

v(t)1
mLCE = λ = lim Λ(t) = lim ln

t v(0)



Symplectic integration 
We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. 

Num. Math. (2013) –  Senyange & S., EPJ ST (2018)] to the DKG model: 

 
 
 
 


22 4l

l

2

l l+

N

K

l=

l

1

1 l

ε 1 1
u + u + u - u

2 4
H

2W
+

p

2
=

and the 3-part splitting integrator ABC6
[SS] [S. et al., Phys. Let. A (2014) –  

Gerlach et al., EPJ ST (2016) – Danieli et al., MinE (2019) ] to the DDNLS 

system: 
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By using the so-called Tangent Map method we extend these symplectic 

integration schemes in order to integrate simultaneously the variational 

equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. 

(2011)  –  Gerlach et al., IJBC (2012)]. 



DKG: Weak Chaos  

Block excitation  

L=37 sites,  

E=0.37, W=3 
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DKG: Weak Chaos 

Individual runs 

Linear case 

E=0.4, W=4 

Average over 50 realizations 

 

Single site excitation E=0.4, 

W=4 

Block excitation (L=21 sites) 

E=0.21, W=4 

Block excitation (L=37 sites) 

E=0.37, W=3 

 

 

S. et al., PRL (2013) 
 log

log
L

d

d t





slope -1 

slope -1 

αL = -0.25 



Weak Chaos: DKG and DDNLS 

DKG DDNLS 

Block excitation (L=37 sites) E=0.37, W=3 

Single site excitation E=0.4, W=4 

Block excitation (L=21 sites) E=0.21, W=4 

Block excitation (L=13 sites) E=0.26, W=5 

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)] 

Block excitation (L=21 sites) β=0.04, W=4 

Single site excitation β=1, W=4 

Single site excitation β=0.6, W=3 

Block excitation (L=21 sites) β=0.03, W=3 

αΛ = -0.25 αΛ = -0.25 



Strong Chaos: DKG and DDNLS 

DKG DDNLS 

Block excitation (L=83 sites) E=0.83, W=2 

Block excitation (L=37 sites) E=0.37, W=3 

Block excitation (L=83 sites) E=0.83, W=3 

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)] 

Block excitation (L=21 sites) β=0.62, W=3.5 

Block excitation (L=21 sites) β=0.5, W=3 

Block excitation (L=21 sites) β=0.72, W=3.5 

αΛ = -0.3 αΛ = -0.3 



Deviation Vector Distributions (DVDs) 

Deviation vector:   

v(t)=(δu1(t), δu2(t),…, δuN(t), δp1(t), δp2(t),…, δpN(t))  
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Deviation Vector Distributions (DVDs) 
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Deviation Vector Distributions (DVDs) 

Energy  

DKG: weak chaos. L=37 sites, E=0.37, W=3 

DVD 



Deviation Vector Distributions (DVDs) 

Energy  

DKG: weak chaos. L=37 sites, E=0.37, W=3 

DVD 



Weak Chaos: DKG and DDNLS 

Energy  DVD Norm DVD 

DKG: W=3, L=37, E=0.37 DDNLS: W=4, L=21, β=0.04 



Deviation Vector Distributions (DVDs) 

Norm 

DDNLS: strong chaos W=3.5, L=21, β=0.72 

 

DVD 



Deviation Vector Distributions (DVDs) 

Norm 

DDNLS: strong chaos W=3.5, L=21, β=0.72 

 

DVD 



Strong Chaos: DKG and DDNLS 

Energy  DVD Norm DVD 

DKG: W=3, L=83, E=8.3 DDNLS: W=3.5, L=21, β=0.72 



Characteristics of DVDs 

DKG DDNLS 

Weak chaos Strong chaos 

DKG DDNLS 



Characteristics of DVDs 
KG weak chaos  

L=37, E=0.37, W=3 

Range of the lattice 

visited by the DVD 

   
[0, ][0, ]

( ) max ( ) min ( )w w
tt

R t l t l t 

DKG DDNLS 

Weak  

chaos 

 

1

N
D

w l

l

l l




Strong 

chaos 

 



The  

 PBD model of DNA 



DNA structure 
Double helix with  two types of bonds: 

• Adenine-thymine (AT) – two hydrogen bonds 

• Guanine-cytosine (GC) – three hydrogen bonds 



Hamiltonian model 

Nearest neighbors coupling potential  

K=0.025 eV/Å2, ρ=2, b=0.35 Å-1 

Bond potential energy (Morse potential) 

GC: D=0.075 eV, a=6.9 Å-1 

AT: D=0.05 eV, a=4.2 Å-1 

Peyrard-Bishop-Dauxois (PBD) model 
[Dauxois, Peyrard, Bishop, PRE (1993)] 



Disorder realizations 
Different arrangements of AT and GC bonds. 

PAT=1 (100% AT bonds) 



Disorder realizations 
Different arrangements of AT and GC bonds. 

PAT=1 (100% AT bonds) 

PAT=0.4 (40% AT bonds) 



Disorder realizations 
Different arrangements of AT and GC bonds. 

PAT=1 (100% AT bonds) 

PAT=0.4 (40% AT bonds) 



Disorder realizations 
Different arrangements of AT and GC bonds. 

Periodic boundary conditions 

PAT=1 (100% AT bonds) 

PAT=0.4 (40% AT bonds) 



Lyapunov exponents (E/n=0.04, PAT=0.3) 

1 realization, 1 initial condition 



Lyapunov exponents (E/n=0.04, PAT=0.3) 

1 realization, 1 initial condition 

1 realization, 10 initial conditions 



Lyapunov exponents (E/n=0.04, PAT=0.3) 

1 realization, 1 initial condition 

1 realization, 10 initial conditions 

10 realizations, 10 initial conditions 



Lyapunov exponent vs. energy per particle 

Homogeneous chain 

[Barré & Dauxois, 

EPL (2001)] 

 



Lyapunov exponent vs. energy per particle 

Homogeneous chain 

[Barré & Dauxois, 

EPL (2001)] 

 



Lyapunov exponent vs. energy per particle 

Homogeneous chain 

[Barré & Dauxois, 

EPL (2001)] 

 

GC chains 

more chaotic 



Lyapunov exponent vs. energy per particle 

Homogeneous chain 

[Barré & Dauxois, 

EPL (2001)] 

 

AT chains 

more chaotic 

GC chains 

more chaotic 



Lyapunov exponent vs. energy per particle 

Homogeneous chain 

[Barré & Dauxois, 

EPL (2001)] 

 

AT chains 

more chaotic 

GC chains 

more chaotic 

Type of chain 

does not play 

a role 



DNA denaturation (melting) 
Melting: large bubbles forming in the DNA chain as bonds break 

As yn increases the exponentials in  

tend to 0, the system becomes effectively linear 

and the mLCE →0. 
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DNA denaturation (melting) 
Melting: large bubbles forming in the DNA chain as bonds break 

As yn increases the exponentials in  

tend to 0, the system becomes effectively linear 

and the mLCE →0. 



DVD and the formation of bubbles 



DVD and the formation of bubbles 



DVD and the formation of bubbles 



DVD and the formation of bubbles 
Relation between the concentration 

of the deviation vector at a site and 

the formation of a bubble at that site. 



Future works 

• DKG and DDNLS models in 2 spatial dimensions  

• Extended, sequence-dependent  PBD models of DNA  

• Models of granular material 

• Graphene models 



Future works 
DDNLS in 2 spatial dimensions (strong chaos)  

Norm Norm DVD DVD 



Future works 
DDNLS in 2 spatial dimensions (strong chaos)  

Norm Norm DVD DVD 



Summary 
• Both the DKG and the DDNLS models show similar chaotic behaviors 

• The mLCE and the DVDs show different behaviors for the weak and the strong chaos 

regimes. 

• Lyapunov exponent computations show that:  

 Chaos not only exists, but also persists. 

 Slowing down of chaos does not cross over to regular dynamics. 

 Weak chaos: mLCE ~ t-0.25  -  Strong chaos: mLCE ~ t-0.3 

• The behavior of DVDs can provide information about the chaoticity of a dynamical 

system.  

 Chaotic hot spots  meander through the system, supporting a homogeneity of 

chaos inside the wave packet. 
 

• Heterogeneity influences the chaotic behavior of the DNA chaotic behavior. 

• There seems to be a relation between the concentration of the DVD at a site and the 

formation of a bubble 

B. Senyange, B. Many Manda & Ch. S.: Phys. Rev. E, 98, 052229 (2018) ‘Characteristics 

of chaos evolution in one-dimensional disordered nonlinear lattices’ 

M. Hillebrand, G. Kalosakas, A. Schwellnus & Ch. S.: Phys. Rev. E, 99, 022213 (2019) 

‘Heterogeneity and chaos in the Peyrard-Bishop-Dauxois DNA model ’ 
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